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THE STRESS INTENSITY FACTORS FOR A GRIFFITH
CRACK WHOSE SURFACES ARE LOADED ASYMMETRICALLY

I. N. SNEDDON and U. B. C. 0, EJIKE*

Department of Mathematics
The University of Glasgow, Glasgow

Abstract-Formulae for the calculation of the stress intensity factors at the tip of a Griffith crack, and for the
normal component of the surface displacement, are derived for a crack whose surfaces are subjected to completely
arbitrary surface tractions.

1. INTRODUCTION

THE USE of integral transform methods to calculate the distribution of stress in the vicinity
of a Griffith crack under a symmetrical pressure is well-known [1,2]. In this paper we con
sider the general problem ofthe loading ofa Griffith crack by an unsymmetrical distribution
of surface tractions (cf. Fig. 1). We assume that the Griffith crack Ixl :s; a, y = 0 is opened

y

(-a,O) a

FIG. 1.

(a,O) x

up under the action of the forces shown so that on the upper surface ofthe crack we have the
conditions

(iYix, 0+) = - p+(x),

(iXY(x, 0+) = q+(x)

Ixl :s; a,

Ix! :s; a,

(1.1)

(1.2)

* This paper was prepared as a part of the work of the Applied Mathematics Research Group at North
Carolina State University through the grant AF-AFOSR-444-66 and is under the joint sponsorship of AFOSR,
ARO and ONR through the Joint Services Advisory Group.
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while on the lower surface we have the conditions

O"yy(x, 0-) = - p-(x),

O"xix, 0-) = -q-(x),

Ixl ~ a,

Ixl ~ a.

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

We solve the equations of elastic equilibrium for the entire xy-plane with the Griffith crack
by considering suitably formulated mixed boundary value problems for the half-planes
y ~ 0 and y ~ O. In the region of the x-axis outside of the crack we assume that all the
components of the displacement vector and of the stress tensor are continuous, i.e. that
when Ixl > a, y = 0 we have the conditions

Ux(x, 0+) = ux(x, 0-)

uix, 0+) = uy(x, 0-)

O"xix, 0+) = O"XY(x, 0-)

O"Yix, 0+) = O"Yix, 0-).

We also have the continuity condition

O"xx(x, 0+) = O"xx(x, 0-), Ixl > a,

but it is easily shown that if the conditions (1.5) through (1.8) are satisfied, this last condition
is satisfied automatically.

In applications to fracture mechanics of the solution of crack problems in the classical
theory of elasticity most interest is centred on the calculation of the stress-intensity factors
at the crack tips [3,4]. These may be defined by the equations

K+ = lim )(x-a)O"yy(x,O), (1.9)
x~a+

K_ = lim )(-x-a)O"yy(x,O), (1.10)
x-+-a-

N + = lim )(x - a)O"xix, 0),
x-+a+

N_ = lim )(-x-a)O"xix,O).
x""'-a-

(1.11)

(1.12)

Even if the main interest is in the computation of the stress-intensity factor it is also
important to calculate the normal component of the displacement of the crack faces. The
kind of solution used here-which depends on a systematic use of the theory of dual
integral equations-remains valid only so long as the inequality

Ixl < a, (1.13)

is satisfied. As pointed out recently by Burniston [5] it is possible to impose loading con
ditions which cause crack surfaces to touch in the vicinity of the centre of the crack, which
in turn sets up entirely different boundary conditions and renders invalid the type ofsolution
employed here.

In this paper section 2 contains an account of the solution of the general problem by
means of Fourier transforms; it is shown that certain arbitrary functions entering into this
general solution can be determined from the solutions of four pairs of dual integral equa
tions. These solutions can be found by "elementary methods"; the details are given in
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section 3. The determinations of the stress-intensity factors and of the shape of the crack
are considered, respectively, in sections 4 and 5.

2. GENERAL SOLUTION OF THE EQUATIONS OF EQUILIBRIUM

It is easily shown (ef for example [2J, p. 402) that the equations of elastic equilibrium
have solutions of the form

O"Xy(x, y) = - Dx§]C lGy(~, y); ~ ---> xJ - Dx~[C 1Hy(~, y); ~ ---> xJ, (2.2)

O"y/x,y) = -Dx~[G(~,y);~--->xJ+Dx~[H(~,y);~--->xJ, (2.3)

where

and the functions G(~, y) and H(~, y) both satisfy the equation

(2.4)

Hy(~, y) denotes iJH(~, y)/iJy etc. As usual ~ and ~ denote the operators of the Fourier sine
and the Fourier cosine transforms respectively:

~[F(~, y); ~ ---> xJ =J(~){X) F(~, y) sin(~x)d~,

~[F(~,y);~--->xJ =J(~){<X) F(~,y)cos(~x)d~.

The corresponding expressions for the components ux , uy of the displacement are given
by the pair of equations

(l +11)-1 Eux(X' y) = ~[C 2{(1_ 11)Gyy + 11~2G}; ~ ---> xJ

-~[C2{(l-11)Hyy+11~2H}; ~ ---> xJ,

(l +11)-1Eu/x, y) = ~[C 3{(1_ 11)Gyyy - (2 - 11)~2Gy} ; ~ ---> xJ

+~[C 3{(l- 11)Hyyy - (2 - 11)~2Hy} ; ~ ---> xJ,

(2.5)

(2.6)

in which 11 denotes Poisson's ratio and E the Young's modulus of the material forming the
infinite body.

The solutions of equation (2.4) corresponding to the upper half-plane y ~ 0 are

G(~,y) = [Al(~)+~y{Alm-Bl(~)}]e-~y,

H(~,y) = [A2(~)+~y{A2(~)-B2(~)}]e-~y,

(2.7)

(2.8)



516 I. N. SNEDDON and U. B. C. O. EJIKE

(2.9)

(2.10)

(2.11)

(2.12)

where AI' A 2, B 1 and B2 are functions of ~ alone. For these solutions equations (2.5), (2.6),
(2.2) and (2.3) give respectively

(1 +I't)- 1Eux(x, 0 +) = - ~[{(1- 21/)A 1(~)- 2(1-1/)B 1(m ;x]

-.~,I{(1-21/)A2W-2(1-1/)B2(~)};x]

(1 +1/)-IEuy(x, 0+) = ~[2(1-1/)AIW-(1 21/)Bl(~); x]

+ .~[2(1-1/)A2(~) - (1- 21/)B2(~);x],

(TXY(x, 0+) = D~[Bl(~);x]+Dx·~[B2(();xJ,

(Tyy(x, 0+) = -Dx~[Al(~);x]+Dx~[A2(~);x].

On the other hand, the solutions of (2.4) corresponding to y ~ 0 are

For these solutions

G(~, y) = [A3(~)+ ~y{ B3(~)- A3(~)}Je~y,

H(~,y) = [A4(~)+~y{B4(~)-A4(~)}]e~}'.

(2.13)

(2.14)

(2.15)

(2.16)

(I +1/)-1 Eux(x, 0-) = ~[{2(1-1/)B3(~)-(1-21/)A3(m; x]

- ~[(2(1 1/)Bi~)- (1- 21/)A4(m; x],

(1 +1J)-IEu/x, 0-) = ~[{(1-21/)B3(~)-2(1-1J)A3(m; x]

+~[{(1-21/)B4(~)-2(1-IJ)A4(m; x],

(Tx./X'O-)= -D~[B3(~);x]-D~[B4(~);x], (2.17)

(Ty'v(x,O-) = -D~[A3(~);x]+D~[A4(~);x]. (2.18)

The forms of the eight functions AR), Bi~), U= 1, ... ,4) are determined by the
boundary and continuity conditions. In the next section we show how the problem of
determining these functions is reduced to that ofsolving four pairs ofdual integral equations.

3. SOLUTION OF THE DUAL INTEGRAL EQUATIONS

Equations (1.1), (2.12) imply the equation

D~[Al(~); x]-D~[A2(~);x] = p+(x), Ixi < a.

If we denote the odd and even parts of p+(x) by p~(x) and p~(x) respectively, so that

p~(x) = t[P+(x)+ p+( - x)], p~(x) = t[P+(x)_· p+( x)],

then this equation can be replaced by the two equations

O<x<a,

Dx~[A2(~);X]= -P6(X), 0 < x < a,

In a similar way equations (1.2) and (2.11) imply the equations

(3.1 )

(3.2)

Dx~[Bl(~); x] = q~(x),

Dx~[B2(~); x] = q~(x),

O<x<a,

O<x<a,

(3.3)

(3.4)
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equations (1.3) and (2.18) the equations

Dx~[A3(~);x] = p;(x),

Dx~[A4(~);X]= -Po(x),

and equations (1.4) and (2.17) the equations

D~[B3(~);x] = qo(x),

Dx~[B4(~); x] = q;(x),

0< x < a,

0< x < a,

0< x < a,

0< x < a.

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.1 0)

The equations (1.5), (2.9), (2.15) lead by similar reasoning to the pair of equations

(1-2'1)~[AI'(~)-A3(~);x]-2(1-'O~[BI(~)-B3(~);x] = 0, x> a,

(1-2'1)~[A2m-A4(~);x]-2(1-'1)~[B2(~)-B4(~);x] = 0, x> a,

and equations (1.6), (2.10) and (2.16) to the pair

2(1-'1)~[AI(~)+A3(~);x] -(1-2'1)~[BI(~)+B3(~);x] = 0,

2(1-'1)~[A2(~) +A4(~); x] -(1- 2'1~[B2(~)+B4(~); x] = 0,

x > a, (3.11)

x> a. (3.12)

In a similar way we can easily show that equations (1.8), (2.12) and (2.18) are equivalent to
the pair of equations

Dx~[AI(~)-A3(~);X]= 0

Dx~[A2(~)-A4(~);X] = 0,

x> a,

x> a,

(3.13)

(3.14)

and that equations (1.7), (2.11) and (2.17) are equivalent to the pair

(3.15)

(3.16)

x> a,

x> a.

Dx~[BI(~)+B3(~); x] = 0,

Dx~[B2(~)+B4(~); x] = 0,

Integrating both sides of equation (3.15), we find that

~[Bl(~)+B3(~);X]= hI, x> a,
where hI is a constant. By the Riemann-Lebesgue lemma we see that, provided BI(~)+B3(~)

satisfies certain differentiability and integrability conditions, the integral on the left side of
this equation tends to zero as x -+ CfJ; hence hI = 0, i.e. equation (3.15) may be replaced
by

~[BIm+B3(~); x] = 0,

Hence from equation (3.11) we deduce that

~[AI(~)+A3(~); x] = 0,

x> a.

x> a.

(3.17)

(3.18)

Similarly from equations (3.16) and (3.12) we deduce the pair of equations

~[B2m+B4(~);X]= 0,

~[A2(~)+A4(~);X] = 0,

x> a,

x> a.

(3.19)

(3.20)

In a similar way we deduce from equations (3.9) and (3.13) that

~[AIm-A3(~); x] = 0,

~[BI(~)-B3(~); x] = 0,

x> a,

x> a,

(3.21)

(3.22)
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and from equations (3.1 0) and (3.14) that

.~[A2(~)-A4(~);x] = 0, x> a, (3.23)

~[B2(~)- B4(~); x] = 0, x > a. (3.24)

Equations (3.1), (3.5) and (3.13) imply that

Dx.~[Al(~) A3(~); x] = p:(x)-p;(x), 0 < x < a,

Dx~[Al(~) A3(~); x] = 0, x> a,

so that we have the simple relation

(3.25)

as a result of the Fourier inversion theorem.
On the other hand equations (3.1), (3.5) and (3.18) are equivalent to the pair of dual

integral equations

D~[Al(~)+A3(~);xJ = p:(x)+ p;(x),

~[Al(~)+A3(¢);XJ= 0,

0< x < a,

x> a.

The solution of this pair of integral equations is elementary (cf. [6J). It may be written in the
form

(3.26)

where

(3.27)

The functions Al(~) and A3(~) can therefore be determined from equations (3.25) and
(3.26). The functions A2(~) and A4W can be found by a similar method. Equations (3.2),
(3.6) and (3.14) imply that

so that

Dx~[A2(~)-A4(~);xJ = Po(x)- Pri(x),

D~[A2(~) A4(~); xJ = 0,

O<x<a,

x> a,

(3.28)A2(~)- A4(~) = {~rCIS: {pri(u)- Potu)} sin(~u)du,

whereas equations (3.2), (3.6) and (3.20) imply that A2(~)+Ai~) is the solution of the pair
of dual integral equations

D~[A2(~)+A4(~);XJ= -p(j(x)-po(x),

~[A2(~)+A4(~);X]= 0,

O<x<a,

x> a.
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The solution of this pair is also elementary. It may be expressed in the form

where
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(3.29)

g2(t) = (~r f~ {p(j(u)+po(u)} J(~2~U2)' (3.30)

The functions Bl(~)' B2(~)' B3(~) and B4(~) can be determined in a precisely similar
fashion. From equations (3.3), (3.7) and (3.15) we deduce that

D~[Bl(~)+B3(~);X]= q(j(x)+qo(x), 0 < x < a,

Dx~[Bl(~)+ B3(~); x] = 0, x> a,

and hence that

Bl(~)+B3(~)= - (~rc 1 s: {qri(u)+qo(u)} sin(~u)du, (3.31)

and from equations (3.3), (3.7) and (3.21) that

D~[Bl(~)-B3(~);X]= qri(x)-qij(x), 0 < x < a,

~[Bl(~)- B3(~); x] = 0, x > a,

and hence that

where

g3(t) = (~r f: {qij(u)-qri(u)} J(~2~u2l'
Finally, from equations (3.4), (3.8) and (3.16) we have that

D~[B2(~)+B4(~);x] = q:(x)+q;(x), 0 < x < a,

D~[B2(~)+B4(~); x] = 0, x> a,

so that

B2(~)+B4(~)= (~rCl s: {q:(u)+q;(u)} cos(~u)du,

and from equations (3.4), (3.8) and (3.22) that

Dx~[B2(~)-B4(~);X]= q:(x)-q;(x), 0 < x < a,

~[Bi~)-B4(~);X]=0, x>a,

so that

(3.32)

(3.33)

(3.34)

(3.35)
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4. CALCULATION OF THE STRESS-INTENSITY FACTORS

(3.36)

We see from equations (1.9), (LlO) and (2.12) that to calculate the stress intensity factors
K + and K _ we need to evaluate the two limits

k1 - lim J(x-a)Dx~[Al(~); x],
x ..... a+

and

k2 lim J(x-a)Dx~[A2(~); x].
x-a+

Now, from equation (3.26) and an integration by parts, we see that when x > a,

~[Al(~)+ A3(~); x] j (~) f g~(t)J(X2 - t
2
)dt - j(~)gl(a)J(x2 - a2),

from which we deduce that if x > a,

D~[Al(~)+A3(~); x] = j( ~)xf ~~~(;>~:2) -j(~)gl(a) J(x:-a2)"

From equation (3.21) we see that, if x> a,

D~[Al(~); x] = 1Dx~[Al(~)+ A3(~); x],

so that

Similarly from equation (3.29) we have the relation

from which we deduce that

(4.1)

(4.2)

(4.3)

D~[A~(~)+A4(~);X] = j(~)J(~;~)a2)
Using the relation (3.14) we see that

k
2

= ! g2(a) .
2 J(na)

(4.4)
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Similarly if we define

n1 = lim J(x-a)D~[B1(~);x]
X ...... a +

n2 = lim J(x-a)Dx~[B2(~);x]
x-"a+

we find from equations (3.15) and (3.32) that

1 g3(a)
n1 =:2 J(na)'

and from equations (3.16) and (3.35) that

We therefore have the formulae

K+ k 1 +k2 ,

for the stress-intensity factors in terms of the integrals

_1 1t fa+ _)] dx
k1 - -b'a) [Pe (x)+ Pe (x I( 2--2)'
nOva -x

1 _ fa + _ xdx
k2 = -(2a) t [Po (x)+ Po (x)] J( 2 2)'

1t 0 a -x

1 -tIa
_ +(] xdxn1 = -(2a) [qo(x)-qo x) r(T---z)'

nova -x

_ 1(1 t fa + - dx
n2 - - za) [qe (x)-qe (x)] J( 2 2)'

1t 0 a -x

5. THE CALCULATION OF THE CRACK SHAPE
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(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

The shape of the crack resulting from the deformation may be calculated by means of
equations (2.10) and (2.16).

From these equations we deduce that

Ixl s; a, (5.1)

where the function w(x) is defined by the equation

w(x) = 2(l-11){~[At«;)+ A3(~); x] +~[A2(~)+ A4R); x]

-(1-211){~[B1R)+ B3R); x] +~[B2(~)+ B4(~); x]}.
(5.2)
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Now from equations (3.26) and (3.29) we deduce that

w; v v. _ )(2) fa tgt(t)dt
sPc[A t (c;)+A 3(<;),x]- ~ xJ(t2_~2)' O<x<a,

~[A2(~)+A4(~);X]=j(~) f tJ~t;(~~~)' 0 < X < a.

Integrat!ng both sides of equations (3.3) and (3.7) with respect to x from x < a to a and
adding we find that

~[Bt(()+B3(();X]= ~[Bl(()+B3(();a]- f {qt(u)+qo(u)} duo

Similarly from equations (3.4) and (3.8) we find that

~[B2(()+B4(~); x] ~[B2(~) + B4(~); a] - f {q:(u)+ q;(u)} duo

Since the condition uy(a, 0+) = uia, 0 - ) is equivalent to the condition w(a) = 0 we deduce
that

and hence that

w(x) = 2(1- 1])j(~) [ [tgt(t)+ xt- tg2(t)] J(t~~ x2)

+(1-21])f [qe+(u)+qt(u)+q;(u)+qo(u)] du, O<x<a.

(5.3)

(5.4)

-a < x < o.

In a precisely similar way we can show that

w(x) = 2(1-1])j(~) II [tgt(t)-lxIC tg2(t)] J(t~~ x2)

-(1-21]) fa {q:(u)+q;(u)-qti(u)-qo(u)} du,Jlxl

The necessary condition (1.13) for the validity of the solution can now be replaced by
the condition

w(x) > 0, Ixl < a. (5.5)

To complete the calculation of the crack shape we need an expression for the function
z(x), where

1+1]
uy(x, 0+ )+uix, 0-) = E-z(x).

From equations (2.10) and (2.16) we deduce that

z(x) = 2(l-1]){~[Al«()-A3«(); X]+~[A2m- A4((); x]}

-(1- 21]){~[Bl«()-B3«(); x] -~[B2«()- B4«(); x]}.

(5.6)
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The solution (3.32) yields the result .

~[Bl(~)-·B3(~);X] = j(~) J: t-
1
g3(t)dt -j(~) J: tJ~;~t~d:2).

and the solution (3.35) gives

j(
2) fX tg4(t) dt

g;[B2(~)-B4(~); x] = ~ 0 J(x2_ t2f

The function

523

0< x < a, (5.7)

can be calculated in any particular case by means of equation (3.25) and the function

O<x<a, (5.8)

by means of equation (3.28).
We therefore find that the function z(x) is given by the equations

z(x) = 2(1-IJ){zl(x)+z2(x)}

- (1- 2IJ)j(~){J: c 193(t) dt- J: [Xt-
1
g3(t)- tg4(t)] J(X~~ t2J

and

(5.9)

0< x < a;

(5.10)
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